La L-tiroxina o tetraiodo-L-tironina (T4) è uno degli ormoni iodati prodotti dalle cellule tiroidee insieme alla 3,5,3'-triiodo-L-tironina (T3). Si usa riferirvisi anche come T4, in opposizione all'altro ormone tiroideo circolante - T3 (il numero indica il numero di atomi di iodio presenti), che è la forma più attiva dell'ormone, avendo un'affinità 10 volte maggiore per il recettore degli ormoni tiroidei. È sintetizzata nelle cellule follicolari della tiroide a partire da una grossa glicoproteina nota come tireoglobulina, accumulata nella colloide dei follicoli. Dopo la sintesi, è immessa nel circolo ematico assieme alla T3, dove viaggiano principalmente legate a proteine plasmatiche, che le proteggono dal metabolismo e dall'escrezione: la TBG (Thyroxine Binding Globulin) ne lega il 75%, il resto è legato all'albumina e alla prealbumina. Una piccola quota (circa lo 0,03% di T4 e lo 0,3% di T3) viaggia come ormone libero, le cosiddette fT4 e fT3 (f=free, cioè libere), che rappresentano la frazione fisiologicamente attiva, cioè capace di legarsi al proprio recettore.
La tiroxina è la più presente nel sangue, rappresentando il 90% del totale degli ormoni tiroidei, e la sua emivita è relativamente elevata (6 giorni) contro 1 giorno per T3. Tuttavia, viene convertita in parte in T3 per esplicare i suoi effetti. Gli ormoni tiroidei agiscono sul metabolismo corporeo in vari modi:
Aumentano il consumo di ossigeno e la produzione di calore (con aumento della temperatura corporea)
Stimolano la sintesi proteica e positivizzano il bilancio dell'azoto (indice di utilizzo delle proteine per la loro sintesi)
Aumentano la gluconeogenesi e la glicogenolisi
Stimolano la sintesi, la mobilizzazione e il catabolismo del colesterolo e dei lipidi in genere.
L’azione catabolica è prevalente
Gli ormoni tiroidei aumentano la velocità dei processi ossidativi cellulari e regolano il metabolismo della maggior parte dei tessuti. In generale, si ha un effetto prevalentemente anabolico a basse dosi, mentre a dosi elevate si ha un'azione catabolica. Questa azione bifasica è evidente nei confronti del metabolismo del glicogeno, delle proteine e dei lipidi.
Inoltre, T4 e T3 regolano l’attività del sistema adrenergico agendo sulla responsività dei tessuti periferici alle catecolamine. Un loro eccesso, come negli ipertiroidismi, causa un aumento della frequenza cardiaca e della contrattilità miocardica; un aumento della gittata pulsatoria e della gittata cardiaca; la diminuzione delle resistenze periferiche causata dalla vasodilatazione; un aumento del flusso sanguigno locale nella cute (con conseguente sudorazione e aumento della temperatura), nei muscoli, nel cuore e nell’encefalo. Questi cambiamenti sono il risultato di vari fattori: azione inotropa (aumento della forza di contrazione cardiaca) e cronotropa (aumento della frequenza cardiaca) positiva degli ormoni tiroidei, aumentata responsività all'azione delle catecolamine, aumentata richiesta periferica di ossigeno.
Nel corso della vita giovanile, la tiroxina e la sua forma più attiva T3, in collaborazione con l'GH (ossia l'ormone somatotropo, secreto dall'adenoipofisi) controllano l'accrescimento. Gli ormoni tiroidei sono indispensabili allo sviluppo dell’apparato scheletrico e alla maturazione di quello riproduttivo.
In ambito clinico, il dosaggio della frazione libera (quella non legata alle proteine di trasporto plasmatiche) della T4 e della T3 (fT4 e fT3), essendo la quota responsabile delle azioni sui tessuti, unita al dosaggio dell'ormone tireostimolante (TSH), permette la diagnosi della maggior parte delle malattie tiroidee.
A livello farmacologico, la Tiroxina è usata per la terapia sostitutiva nei pazienti con ipotiroidismo e cretinismo o per la soppressione del TSH nei pazienti con gozzo non tossico.
|